
HAppS
Haskell’s High Availability Application Server

alex@alexjacobson.com
http://happs.org

mailto:alex@alexjacobson.com
mailto:alex@alexjacobson.com
http://happs.org
http://happs.org

What do you want?

• Fast functional prototype

• Easy deployment

• Ability to scale

• Efficiency/Performance

• Ability to change

LAMP lumps

• marshalling i/o to/from language objects

• marshalling objects to/from relational store

• Consistency between layers

• inferior programming languages ;-)

• Deployment complexity (memcache too!)

• Disk vs Memory complexity

Prevayler Inspiration

• keep data in memory

• command pattern for accessing it...

• but checkpointing/consistency really hard

Why Haskell for this

• referential transparency for checkpointing

• referential transparency for loose
consistency (optimistic concurrency)

• laziness for state versions

• scrap your boilerplate programming

• type system keeps your code together

HAppS

• develop in Haskell

• operate on your data in memory with ACID

• scrap your boilerplate

• all in one executable

• replicate to scale

HAppS-Data

• auto-convert data to/from XML

• auto-convert data to/from name-value pairs

• defaultvalue

• migrations

• soon: validation

• todo?: auto-convert types to/from XSD

HAppS-IxSet

• collection type for relational operation

• instead of ad hoc Data.Map & Data.Set

• (@< (Published t)) (@= (Author author))
books

• efficient update/lookup and laziness

• eventually perhaps query/update-fusion

HAppS-Server

• Fast HTTP/Fast-CGI application serving

• Nice interface for exposing app via HTTP

• XSLT templating system

• Facebook library

• operations in state aware I/O monad.

• Soon: SMTP-Relay?

HAppS-State

• Command Pattern for Haskell

• ACID guarantees on in memory haskell data
structures

• important: all transactional state is in
memory!

• Multimaster for availability and query scaling

• Soon: Sharding for memory and update

HAppS-Store

• FlashMsgs (like RoR)

• HelpReqs

HAppS-Begin

• Example of app from which you can modify

• All in one executable

• Simple Deployment model

• Type-checker keeps you good.

• Automatic re-compile/restart on code
changes

Searchpath

• import chasing across the internet

• like -i but with URLs!

• no more iterative manual package installs

• no more package version conflicts

• nothing is global unless you want it

How to Build An App

• sketch on paper

• figure out data types you produce/consume

• figure out state you want to maintain

• define side-effects associated with
workflows

• define HTTP interface you want to expose

• layout pages

Show the code

• demo app

• show types

• show http

• show state

Demo Code Behavior

• get form to enter help request

• post help request and arrive on page with
message acknowledging help requests

• see help requests so far

The Types

• data HelpReqForm = HelpReqForm

• data HelpReq = HelpReq FB.Uid Published
HelpText Status--post the help

• newtype HelpText = HelpText String

• data Status = Open | Closed Published

• newtype HelpFeed = HelpFeed [HelpReq]

The HTTP

 dir "help" [method () $ ok $ HelpReqForm]

 ,dir "addHelp" [withData $ \helpReq ->
 [method () $ do
 addHelpReq helpReq
 insFlashMsg uid "Help message received"
 fbSeeOther "side-nav"
]]

 ,dir "helps" [method () $ do
 flashMsg <- extFlashMsg uid
 helpReqs <- getHelpReqs --haskell is lazy so we can take 1000 below
 (ok .
 insEl (Attr "context" "helpfeed") . --insert xml attributes
 insEl (Attr "flashMsg" flashMsg) .
 HelpFeed .
 take 1000) helpReqs]

State

addHelpReq helpReq = withHelpReqs $
 do
 seconds <- getTime >>= return . (div 1000)
 modify $ insert $ gSet (Published seconds) helpReq

getHelpReqs:: (HasHelpReqs st, MonadReader st m) => m [HelpReq]
getHelpReqs = (return . byRevTime . helpReqs) =<< ask

commands = ['addHelpReq,'getHelpReqs]

THANK YOU

