HAppS

Haskell’s High Availability Application Server
alex@alexjacobson.com
http://happs.org

mailto:alex@alexjacobson.com
mailto:alex@alexjacobson.com
http://happs.org
http://happs.org

What do you want!

Fast functional prototype
Easy deployment

Ability to scale
Efficiency/Performance

Ability to change

LAMP lumps

marshalling i/o to/from language objects

marshalling objects to/from relational store
Consistency between layers

inferior programming languages ;-)
Deployment complexity (memcache too!)

Disk vs Memory complexity

Prevayler Inspiration

® keep data in memory
® command pattern for accessing it...

® but checkpointing/consistency really hard

Why

referentia

referentia

Haskell for this

transparency for checkpointing

transparency for loose

consistency (optimistic concurrency)

laziness for state versions

scrap your boilerplate programming

type system keeps your code together

HAppS

develop in Haskell

operate on your data in memory with ACID
scrap your boilerplate

all in one executable

replicate to scale

HAppS-Data

auto-convert data to/from XML

auto-convert data to/from name-value pairs
defaultvalue

migrations

soon: validation

todo?: auto-convert types to/from XSD

HAppS-IxSet

collection type for relational operation
instead of ad hoc Data.Map & Data.Set

(@< (Published t)) (@= (Author author))
books

efficient update/lookup and laziness

eventually perhaps query/update-fusion

HAppS-Server

Fast HT TP/Fast-CGl application serving
Nice interface for exposing app via HTTP
XSLT templating system

Facebook library

operations in state aware |/O monad.

Soon: SMTP-Relay?

HAppS-State

Command Pattern for Haskell

ACID guarantees on in memory haskell data
structures

important: all transactional state is in
memory!

Multimaster for availability and query scaling

Soon: Sharding for memory and update

HAppS-Store

® FlashMsgs (like RoR)
® HelpReqgs

HAppS-Begin

Example of app from which you can modify
All in one executable

Simple Deployment model

Type-checker keeps you good.

Automatic re-compile/restart on code
changes

Searchpath

import chasing across the internet

like -i but with URLs!

no more iterative manual package installs
no more package version conflicts

nothing is global unless you want it

How to Build An App

sketch on paper

figure out data types you produce/consume

figure out state you want to maintain

define side-effects associated with
workflows

define HT TP interface you want to expose

layout pages

Show the code

demo app

show types
show http

show state

Demo Code Behavior

® get form to enter help request

® post help request and arrive on page with
message acknowledging help requests

® see help requests so far

The Types

data HelpRegForm = HelpReqForm

data HelpReq = HelpReq FB.Uid Published
HelpText Status--post the help

newtype HelpText = HelpText String
data Status = Open | Closed Published
newtype HelpFeed = HelpFeed [HelpReq]

The HTTP

dir "help" [method () $ ok $ HelpRegqForm]

,dir "addHelp" [withData $ \helpReq ->
[method () $ do
addHelpReq helpReq

insFlashMsg uid "Help message received"
fbSeeOther "side-nav"

1]

,dir "helps" [method () $ do
flashMsg <- extFlashMsg uid

helpRegs <- getHelpRegs --haskell is lazy so we can take 1000 below
(ok .

insEl (Attr "context" "helpfeed") . --insert xml attributes

insEl (Attr "flashMsg" flashMsg) .

HelpFeed .

take 1000) helpRegs]

State

addHelpReq helpReq = withHelpReqgs $
do
seconds <- getTime >>= return . (div 1000)
modify $ insert $ gSet (Published seconds) helpReq

getHelpRegs:: (HasHelpRegs st, MonadReader st m) => m [HelpReq]
getHelpRegs = (return . byRevTime . helpRegs) =<< ask

commands = ['addHelpReq,'getHelpReqs]

THANKYOU

