
  

Buy a Feature: an Adventure in 
Immutability and Actors

David Pollak
BayFP August 22, 2008



  

David Pollak
 Not strict, but pretty lazy
 Lead developer for Lift web framework
 Scala since November 2006, Ruby/Rails, Java/J2EE 
 Spreadsheet junky (writing more than using)
 Paying work (all Lift based):

 Enthiosys' Buy a Feature
 SAP's ESME project
 Gump-it: stuff worth missing



  

About Buy a Feature (online)
 The first of Enthiosys' online Innovation Games
 Serious Gaming for Agile Product Management
 Game Play:

 Create a list of product features with estimated costs
 4-8 player buy features that they want
 Motivate negotiations between players
 Learn how players sell each other on features



  

Buy a Feature



  

About Scala & Lift
 Scala

 Hybrid OO & Functional Language
 Compiles to Java Byte-Code and runs fast on JVM
 Compatible with Java libraries
 FP concepts including Actors and Immutablity

 Lift
 Concise, powerful web framework
 Leverages Scala's functional features
 Awesome Comet and AJAX support



  

Buy a Feature Architecture
 Lift based Comet front-end
 UI state managed in Lift CometActors
 All user interaction via JSON messages/events
 Events sent to GameActor
 GameActor updates GameBoard and writes events
 GameActor sends GameBoard, etc. to CometActors



  

Actors – Why?
 Excellent concurrency management
 Event oriented
 Asynchronous
         case EndGame =>

        recordGameEnding()
        this ! ChatMessage(Empty, timeNow, 
                             "Game Ended", Empty, Empty)
        eachListener(_ ! EndGame)



  

Actors – Where?
 UI

 Pushes UI state changes out to browser
 Listen for incoming events/messages

 Cross-session Game managers
 Incoming events serialized
 Incoming events → New State
 New State → Listners (other Actors)



  

Events – Why?
 Anything that can change state is an Event
 Events are timestamped and written to RDBMS
 Events can be replayed through the system for TiVo 

style game replay and pausing
 Complementary to Actors



  

Events – Where?
 Broswer → Server (CometActor)
 CometActor → GameActor
 GameActor → RDBMS
 GameActor → Listners (mostly UI CometActor)
 CometActor → Browser



  

Post-Processing
 Game Events are recalled, in order from RDBMS
 Game Events are send through the GameBoard
 GameBoard is queried for results
 GameBoard is immutable, so a separate copy can be 

associated with each Event
 Thus, there's a freeze-frame at each event



  

Defects
 Lift session bugs

 Lots of stupid problems working around J2EE sessions
 Why? I'm a moron

 Parsing
 Users entering free text → lots of unexpected input
 Most of our tests are here

 Post-processing
 Didn't use GameBoard, but rolled my own – bad results
 Too many GameBoards in memory



  

Team Integration
 Disbelief over code size
 Attempts to dive below the abstractions
 Java-like coding on the road to functional
 Eventual adoption of map, fold, and filter
 NPE: Thing of the past
 Lack of tool support and examples in the wild are 

speed bumps, especially with existing code
 Need a team mentor to help with transition



  

Conclusion
 Amazing productivity for people once up the FP 

curve
 Very low defect rate
 None of the defects were concurrency related!!
 None of the defects were concurrency related!!
 Very flexible system (added Flash front end in a 

day)



  

End
 Questions?



  

Scala: Functions are Objects
 Objects can be passed as parameters
 Functions are syntactically easy to create

var name = “”
SHtml.text(name, name = _)

 They bind to variables/values (e.g. name)



  

Partial Functions
 PartialFunction[A,B] extends Function1[A,B]
 isDefinedAt(x: A)
 Better known as pattern matching:

{
  case Foo(bar) => bar
  case Baz(dog) => dog 
}



  

Composing Partial Function
 { case Foo(bar) => bar

  case Baz(dog) => dog
} orElse { // compose
  case Moo(cow) => cow
  case Meow(cat) => cat
}



  

Extractors and Guards
 Extract data while matching other parts in a pattern:

{ case “Foo” :: id :: Nil => doIt(id) }
 Guards:

{ case “Foo” :: id :: Nil 
  if isValid(id) && loggedIn_? =>
  doIt(id) }



  

Remembering Functions
 Functions are Objects
 Map[String, String => XML]
 Map[String, PartialFunction[String, XML]]
 GET /ajax?OPAQUE_ID=someValue
 Map[OPAQUE_ID](someValue)



  

XML literals and manipulation
 In Scala, XML is like String: supported at the 

language level and immutable
<foo>{(1 to 10).
      map(i => <val>{i}</val>)}</foo>

 (xml \ “val”).map(_.text.toInt).
  .foldLeft(0)(_ + _) == 55



  

Actors and Partial Functions
 Threadless, stackless units of execution
 React to events and otherwise consume nothing but 

memory
 react(PartialFunction[Any, Any]) →

react {case Foo(bar) => doSomething(bar)
        case Baz(dog) =>
doElse(dog) }

 react(primaryHndlr orElse secondaryHndler)



  

Lift REST APIs
 LiftRules.addDispatchBefore {

case RequestMatcher(
   RequestState(
      "showstates":: xs, _),_) =>

XmlServer.showStates(xs) }
 def showStates(...) = XmlResponse(

<states renderedAt={timeNow.toString}>
... </states>)



  

Lift and HTML forms
 var name = “”
 text(name, name = _)
 def setLocale(loc: String) ...
 select(Locale.getAvailableLocales.toList.

map(lo => (lo.toString, lo.getDisplayName)),
setLocale)



  

Lift & AJAX
 AJAX elements are bound to functions:
 a(() => {cnt = cnt + 1; SetHtml("cnt_id", Text( 

cnt.toString))}, “click me”)
 ajaxSelect(opts, 

   v => DisplayMessage("You selected "+v))



  

Lift CometActors
 Lift deals with all the plumbing:

def render = bind("time" -> timeSpan)
override def lowPriority = {
    case Tick => reRender(false)
}


