Buy a Feature: an Adventure In
Immutability and Actors



David Pollak

Not strict, but pretty lazy
Lead developer for Lift web framework

Scala since November 2006, Ruby/Rails, Java/J2EE
Spreadsheet junky (writing more than using)
Paying work (all Lift based):

= Enthiosys' Buy a Feature

= SAP's ESME project

= Gump-it: stuff worth missing



About Buy a Feature (online)

= The first of Enthiosys' online Innovation Games
= Serious Gaming for Agile Product Management

= Game Play:

= Create a list of product features with estimated costs
= 4-8 player buy features that they want
= Motivate negotiations between players

= Learn how players sell each other on features



Buy a Feature

- Teanme

I s i=y)

Inpreved Detall : Projec! Dashbosrd REf

Tasiphayar & 4
Tmat paryar 5l
Tesl piayere
Tar? paar 51
TRt plgar B
Tosd pheer 71
Trwi plaryar B
TewipHapera |
Totalx §120 112
Rameining

T RMTAILITTETIRE LIST

Ky Lists

kn thi=s channed

[

Mof in thie chamned

Tamrrrast ' § g Chan

A, T R
Seram Chal
FrrammChal
TR
Lprrma!iThed
Tar s Ess1 1 FTErL Ol

LT | APUNTA LR

Lokem X




About Scala & Lift

= Scala

= Hybrid OO & Functional Language
= Compiles to Java Byte-Code and runs fast on JVM
= Compatible with Java libraries
= FP concepts including Actors and Immutablity
= Lift
= Concise, powerful web framework
= Leverages Scala's functional features

= Awesome Comet and AJAX support



Buy a Feature Architecture

Lift based Comet front-end

UI state managed 1n Lift CometActors

All user interaction via JSON messages/events
Events sent to GameActor

GameActor updates GameBoard and writes events

GameActor sends GameBoard, etc. to CometActors



Actors — Why?

= Excellent concurrency management
= Event oriented

= Asynchronous

. case EndGame =>
recordGameEnding()
this ! ChatMessage(Empty, timeNow,
"Game Ended"”, Empty, Empty)
eachListener(_ ! EndGame)



Actors — Where?

= Ul
= Pushes UI state changes out to browser
= Listen for incoming events/messages

= Cross-session Game managers
= Incoming events serialized

= Incoming events — New State

= New State — Listners (other Actors)



Events — Why?

Anything that can change state 1s an Event
Events are timestamped and written to RDBMS

Events can be replayed through the system for TiVo
style game replay and pausing

Complementary to Actors



Events — Where?

Broswer — Server (CometActor)

CometActor — GameActor

GameActor — RDBMS

GameActor — Listners (mostly Ul CometActor)

CometActor — Browser



Post-Processing

Game Events are recalled, in order from RDBMS

Game Events are send through the GameBoard

GameBoard 1s queried for results

GameBoard 1s immutable, so a separate copy can be
associated with each Event

Thus, there's a freeze-frame at each event



Defects

= Lift session bugs

= Lots of stupid problems working around J2EE sessions

= Why? I'm a moron

= Parsing
= Users entering free text — lots of unexpected mnput
= Most of our tests are here

= Post-processing

= Didn't use GameBoard, but rolled my own — bad results

= Too many GameBoards in memory



Team Integration

Disbelief over code size

Attempts to dive below the abstractions
Java-like coding on the road to functional
Eventual adoption of map, fold, and filter

NPE: Thing of the past

Lack of tool support and examples 1n the wild are
speed bumps, especially with existing code

Need a team mentor to help with transition - -



Conclusion

Amazing productivity for people once up the FP

Curve

Very low defect rate

None of t]

ne @

None of t]

efects were concurrency re

ated!!

ne g

efects were concurrency re

ated!!

I

I

Very flexible system (added Flash front end 1n a

day)






Scala: Functions are Objects

= Objects can be passed as parameters

= Functions are syntactically easy to create
var name = "’
SHtml.text(hame, name = _)

= They bind to variables/values (e.g. name)



Partial Functions

= PartialFunction[A,B] extends Functionl[A,B]

= isDefinedAt(x: A)

= Better known as pattern matching:
{
case Foo(bar) => bar
case Baz(dog) => dog

§



Composing Partial Function

= { case Foo(bar) => bar
case Baz(dog) => dog
} orklse { // compose
case Moo(cow) => cow
case Meow(cat) => cat

§



Extractors and Guards

= Extract data while matching other parts 1n a pattern:
{ case “Foo” :: id :: Nil => dolt(id) }

= (Guards:
{ case “Foo” :: id :: Nil
if isValid(id) && loggedIn_? =>
dolt(id) }



Remembering Functions

Functions are Objects

Map[String, String => XML]

Map[String, PartialFunction[String, XML]]
GET /ajax?OPAQUE_ID=someValue
Map[OPAQUE_ID](someValue)




XML literals and manipulation

= In Scala, XML 1s like String: supported at the
language level and immutable
<foo>{(1 to 10).
map(i => <val>{i}</val>)}</foo>

= (xml \ “val”).map(_.text.tolnt).
foldLeft(0)(_ + _) == 55



Actors and Partial Functions

Threadless, stackless units of execution

React to events and otherwise consume nothing but
memory

react(PartialFunction[Any, Any]) —

react {case Foo(bar) => doSomething(bar)
case Baz(dog) =>

doElse(dog) }

react(primaryHndlr orElse secondaryHndler)



Lift REST APIs

= LiftRules.addDispatchBefore {
case RequestMatcher(
RequestState(
"showstates":: xs, _),_) =>

XmlServer.showStates(xs) }

= def showStates(...) = XmIResponse(
<states renderedAt={timeNow.toString}>
... </states>)



Lift and HTML forms

var name =
text(name, name = _)
def setlLocale(loc: String) ...

select(Locale.getAvailableLocales.tolist.

map(lo => (lo.toString, lo.getDisplayName)),
setLocale)



Lift & AJAX

= AJAX elements are bound to functions:

= a() => {cnt = cnt + 1; SetHtmI("cnt_id", Text(
cnt.toString))}, “click me”)

= ajaxSelect(opts,
v => DisplayMessage("You selected "+V))



Lift CometActors

= Lift deals with all the plumbing:
def render = bind("time" —-> timeSpan)
override def lowPriority = {
case Tick => reRender(false)

}



