
Functional
JavaScript

Douglas Crockford

Yahoo! Inc.

The World's Most Misunderstood
Programming Language

A language of many contrasts.

The broadest range of
programmer skills of any
programming language.

From computer scientists

to cut-n-pasters

and everyone in between.

Complaints

• "JavaScript is not a language I know."

• "The browser programming experience is
awful."

• "It's not fast enough."

• "The language is just a pile of mistakes."

Hidden under a huge steaming
pile of good intentions and

blunders is an elegant,
expressive programming

language.

JavaScript has good parts.

JavaScript is succeeding very
well in an environment where

Java was a total failure.

Influences

• Self
 prototypal inheritance

 dynamic objects

• Scheme
 lambda

 loose typing

• Java
 syntax

 conventions

• Perl
 regular expressions

Bad Parts

• Global Variables

• + adds and concatenates

• Semicolon insertion

• typeof

• with and eval

• phony arrays

• == and !=

• false, null, undefined, NaN

Transitivity? What's That?
• 0 == '' // true

• 0 == '0' // true

• '' == '0' // false

• false == '' // true

• false == '0' // true

• false == undefined // false

• false == null // false

• null == undefined // true

• " \t\r\n " == 0 // true

• " \t\r\n " == "" // false

Good Parts

• Lambda

• Dynamic Objects

• Loose Typing

• (define foo (lambda (a b c)
 (body)
)

• var foo = function (a, b, c) {
 return body;
};

• (foo a b c)

• foo(a, b, c)

• (cond (p1 e1) (p2 e2) ... (else en))

• p1 ? e1 : p2 ? e2 : ... en

• (quote (a b c))

• ['a', ['b', ['c']]]

Y Combinator

• var Y = function (le) {
 return function (f) {
 return f(f);
 }(function (f) {
 return le(function (x) {
 return f(f)(x);
 });
 });
};

Inheritance

• Inheritance is object-oriented code reuse.

• Two Schools:
• Classical

• Prototypal

Prototypal Inheritance

• Class-free.

• Objects inherit from objects.

• An object contains a link to another object:
Delegation. Differential Inheritance.

 var newObject =

 Object.create(oldObject);
newObject
__proto__

oldObject

Objects

• Objects are general containers.

• Key/value pairs.

• Keys are strings.

• Values are any value.

• Objects can be modified at any time.

• Objects are passed by reference.

• An object can inherit from another object.

Prototypes

An object
containing

public methods

An object
containing

instance data

• Public methods are functions.

• A pseudoparameter this is bound to the
invoked object.

Object literals

• Simple quasiliteral constructor for objects.

• {
 name : value,
 name : value
}

• Inspiration for the JSON Data Interchange
Format. www.JSON.org/

Closure
var digit_name = function () {

 var names = ['zero', 'one', 'two',

 'three', 'four', 'five', 'six',

 'seven', 'eight', 'nine'];

 return function (n) {

 return names[n];

 };

}();

alert(digit_name(3)); // 'three'

A Module Pattern
var singleton = function () {

 var privateVariable;

 function privateFunction(x) {

 ...privateVariable...

 }

 return {

 firstMethod: function (a, b) {

 ...privateVariable...

 },

 secondMethod: function (c) {

 ...privateFunction()...

 }

 };

}();

Module pattern is easily
transformed into a powerful

constructor pattern.

Power Constructors

1. Make an object.
• Object literal

• new

• Object.create

• call another power constructor

Power Constructors

1. Make an object.
• Object literal, new, Object.create, call

another power constructor

2. Define some variables and functions.

• These become private members.

Power Constructors

1. Make an object.
• Object literal, new, Object.create, call

another power constructor

2. Define some variables and functions.

• These become private members.

3. Augment the object with privileged
methods.

Power Constructors

1. Make an object.
• Object literal, new, Object.create, call

another power constructor

2. Define some variables and functions.

• These become private members.

3. Augment the object with privileged
methods.

4. Return the object.

Step One

function myPowerConstructor(x) {
 var that = otherMaker(x);
}

Step Two

function myPowerConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
}

Step Three

function myPowerConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
 that.priv = function () {
 ... secret x that ...
 };
}

Step Four

function myPowerConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
 that.priv = function () {
 ... secret x ...
 };
 return that;
}

Closure

• A function object contains
 A function (name, parameters, body)

 A reference to the environment in which it was
created (context).

• This is a very good thing.

Values

• Numbers

• Strings

• Booleans

• Objects & Arrays

• Functions

• Falsy values:
 false, 0, "", null, undefined, NaN

History

Thirteen years ago in a valley
30 miles to the south...

Working with the Grain

A Personal Journey

Beautiful Code

JSLint

• JSLint defines a professional subset of
JavaScript.

• It imposes a programming discipline that
makes me much more confident in a
dynamic, loosely-typed environment.

• http://www.JSLint.com/

WARNING!
JSLint will hurt your

feelings.

Unlearning Is
Really Hard

Perfectly Fine == Faulty

It's not ignorance does so much
damage; it's knowin' so derned

much that ain't so.

Josh Billings

The Very Best Part:

Stability
No new design errors

since 1999!

Coming Soon

• [ES3.1] ECMAScript Fourth Edition

• Corrections

• Reality

• Support for object hardening

• Strict mode for reliability

• Waiting on implementations

Not Coming Soon

• [ES4] This project has been cancelled.

• Instead, [ES-Harmony].

• So far, this project has no defined goals or
rules.

Safe Subsets

• The most effective way to make this
language better is to make it smaller.

• FBJS

• Caja & Cajita

• ADsafe

• These subsets will be informing the design
of a new secure language to replace
JavaScript.

The Good Parts

• Your JavaScript application can reach a
potential audience of billions.

• If you avoid the bad parts, JavaScript
works really well. There is some brilliance
in it.

• It is possible to write good programs with
JavaScript.

