Functional
JavaScript

Douglas Crockford

Yahoo! Inc.




The World's Most Misunderstood
Programming Language




A language of many contrasts.




The broadest range of
programmer skills of any

programming language.

From computer scientists
to cut-n-pasters

and everyone in between.




Complaints

"JavaScript is not a language | know."

"The browser programming experience is
awful."

"It's not fast enough.”

he language is just a pile of mistakes."




Hidden under a huge steaming
pile of good intentions and
blunders is an elegant,
expressive programming

language.

JavaScript has good parts.




JavaScript is succeeding very
well in an environment where

Java was a total failure.




Influences

« Self « Java
prototypal inheritance syntax
dynamic objects conventions

* Scheme * Perl

lambda regular expressions

loose typing




Bad Parts

Global Variables
+ adds and concatenates

Semicolon insertion

typeof

with and eval
phony arrays
== and =

false, null, undefined, NaN



Transitivity”? What's That”?

e ) == "' // true
e 0 == '0" // true
« 11 == 1Q" // false

e false == "' // true

e false == "'0' // true

e false == undefined false
« false == null // false
e null == undefined true
e " \t\r\n " == // true
e " \t\r\n " == "v // false




Good Parts

 Lambda
* Dynamic Objects

* Loose Typing




e (define foo (lambda (a b c)
(body)

)

e var foo = function (a, b, c) {
return body;
};




« (foo a b c)

« foo(a, b, c)




* (cond (p1el) (p2e2) ... (else en))

e p1 2 el : p2 ? e2 :




 (quote (abc))

*['a', ['b', ['Cc']]]




Y Combinator

e var Y = function (le) {
return function (£f) {
return f£(£f) ;
} (function (f) {
return le (function (x) {
return f£(£f) (x);

});




Inheritance

 Inheritance is object-oriented code reuse.

« Two Schools:

e Classical

* Prototypal




Prototypal Inheritance

» Class-free.
* Objects inherit from objects.

* An object contains a link to another object:
Delegation. Differential Inheritance.

var newObject =

Object.create (oldObject) ;

newObject oldObject

I




Objects

Objects are general containers.
Key/value pairs.

Keys are strings.

Values are any value.

Objects can be modified at any time.
Objects are passed by reference.

An object can inherit from another object.




Prototypes

An object
containing
iInstance data

An object
containing
public methods




* Public methods are functions.

* A pseudoparameter this is bound to the
invoked object.




Object literals

« Simple quasiliteral constructor for objects.

* {
name : value,
name : value

}

* Inspiration for the JSON Data Interchange
Format. www.JSON.org/




Closure

var digit name = function () {
var names = ['zero', 'one', 'two',
'three', 'four', 'five', 'six',

'seven', 'eight', 'nine'];

return function (n) {
return names|[n];
};
}(O) s
alert(digit name(3)) ; // 'three'




A Module Pattern

var singleton = function () ({
var privateVariable;
function privateFunction (x) {
.. .privateVariable. ..
}
return {
firstMethod: function (a, b) {
.. .privateVariable. ..

b

secondMethod: function (c) {

.. .privateFunction() ...




Module pattern is easily
transformed into a powerful

constructor pattern.




Power Constructors

1. Make an object.

Obiject literal
new
Object.create

call another power constructor




Power Constructors

1. Make an object.

Object literal, new, Object.create, call
another power constructor

2. Define some variables and functions.

 These become private members.




Power Constructors

1. Make an object.

Object literal, new, Object.create, call
another power constructor

2. Define some variables and functions.
 These become private members.

3. Augment the object with privileged
methods.




Power Constructors

1. Make an object.

Object literal, new, Object.create, call
another power constructor

2. Define some variables and functions.
 These become private members.

3. Augment the object with privileged
methods.

4. Return the object.




Step One

function myPowerConstructor (x) {
var that = otherMaker (x) ;

}




Step Two

function myPowerConstructor (x) {
var that = otherMaker (x) ;
var secret = f (x);




Step Three

function myPowerConstructor (x) {
var that = otherMaker (x) ;
var secret = f(x);
that.priv = function () {
secret x that

};




Step Four

function myPowerConstructor (x) {
var that = otherMaker (x) ;
var secret = £ (x);
that.priv = function () {
secret x
}s

return that;




Closure

A function object contains

A function (name, parameters, body)

A reference to the environment in which it was
created (context).

* This is a very good thing.




Values

Numbers

Strings

Booleans
Objects & Arrays
Functions

Falsy values:
false, 0, ", null, undefined, NaN




History

Thirteen years ago in a valley
30 miles to the south...




Working with the Grain




A Personal Journey

Beautiful Code




JSLint

» JSLint defines a professional subset of
JavaScript.

It imposes a programming discipline that
makes me much more confident in a
dynamic, loosely-typed environment.

« http://www.JSLint.com/




WARNING!

JSLint will hurt your
feelings.




Unlearning Is
Really Hard

Perfectly Fine == Faulty




It's not ignorance does so much
damage,; it's knowin' so derned

much that ain't so.

Josh Billings




The Very Best Part:

Stability

No new design errors
since 1999




Coming Soon

[ES3.1] ECMASCcript Fourth Edition
Corrections

Reality

Support for object hardening

Strict mode for reliability

Waiting on implementations



Not Coming Soon

« [ES4] This project has been cancelled.

 Instead, [ES-Harmonyy].

* So far, this project has no defined goals or
rules.




Safe Subsets

The most effective way to make this
language better is to make it smaller.

FBJS
Caja & Cajita
ADsafe

These subsets will be informing the design
of a new secure language to replace
JavaScript.




The Good Parts

* Your JavaScript application can reach a
potential audience of billions.

* If you avoid the bad parts, JavaScript
works really well. There is some Dbrilliance
in it.

* Itis possible to write good programs with
JavaScript.




Uncartbing the excellence in JavaScrip

O'REILLY" | 'YAHOO! PrEss




